Friday, 3 May 2024

DNA - that's a wrap - 14 DNA revision videos

OK, so that is a wrap on DNA, a topic of immense significance in the world of biology and genetics.

Over the past few weeks, I have released fourteen revision videos on DNA, with accompanying posts on here and with information sheets accompanying each video (you can find a link to the information sheets in the links below).

In the videos, I have covered:

I then moved on to the all-important three Rs of DNA - replication (copy), repair and recombination:
Next, I asked the important question of how cells regulate the processes of transcription and translation:
I finished off the series by looking at some lab techniques we use to work with DNA:

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

 

Additional Reading

The video was produced with help from the following resources:

New video posted: Understanding Nucleic Acid Hybridisation: Methods & Applications Explained

In this video, I look at Nucleic Acid Hybridisation and how it is the underlying principle for several lab techniques, such as PCR (Polymerase Chain Reaction), dot blots, colony blot hybridisation, chromosome in situ hybridisation (FISH), microarrays, Southern and Northern blotting, and CRISPR/Cas9 gene editing.

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.
 

Additional Reading

The video was produced with help from the following resources:

A Comprehensive Guide on How to Calculate the Size of a DNA Band on a Gel

How do scientists determine the size of DNA bands on an agarose gel? In this guide, I will walk you through the step-by-step process of calculating the size in base pairs of a DNA band on an agarose gel. 

Blog Bonus: Free information sheet summarising the video and the steps - download.

 

Introduction

When working in a lab and running an agarose gel, you may need to determine the size of the DNA fragment, and this information may be crucial for various biological research applications. 

This approach is also described in the following video:


Setting Up the Experiment

Imagine you have loaded a DNA ladder with known sizes in one lane and your DNA sample with an unknown size in another lane of the gel and you get a result that looks like this when the gel has been run.

DNA gel showing a DNA ladder and a band

Before you can calculate the size of your DNA band, you must first label the gel and collect data to create a calibration curve.

Data Collection and Analysis

By measuring the distances the DNA bands in the ladder (see below) have moved and plotting the log values of their sizes against the distances travelled in millimetres (or you can do it in pixels), you can create a calibration curve. This curve will help you accurately determine the size of the DNA band in your unknown sample.

The image below shows the gel and the data table for the plot.

Agarose gel showing the DNA ladder and the band of unknown size, plus a table of data constructed from the gel for the grapg

From the table, you plot the calibration curve.

Calibration curve for determining the size of a band on a DNA gel

Calculating the Size of the DNA Band

After plotting the calibration curve (above) and identifying the distance your unknown band has travelled, you can use the curve to determine the size of the DNA band in base pairs. By following a simple formula involving logarithms, you can convert the log value to the actual size in base pairs.

Conclusion

Calculating the size of a DNA band on an agarose gel requires careful data collection, analysis, and interpretation. By following the steps outlined in this guide, you can confidently determine the size of DNA fragments in your samples. 

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and the steps - download.

Additional Resources

Wednesday, 1 May 2024

New video posted: DNA Cloning - how to overcome some common problems

In this video, I examine the step-by-step process of cloning DNA into plasmids and address common challenges faced in the lab. I start by preparing the DNA and then move on to using restriction enzymes like EcoRI and HindIII. I explain the importance of choosing the correct enzyme pairs to prevent self-ligation and ensure the correct orientation of the insert. I also cover the blue-white selection method to verify successful cloning and discuss using different vectors for larger DNA segments. 

     

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.
 

Additional Reading

The video was produced with help from the following resources:

New video posted: DNA Cloning - how do we clone DNA in the lab?

In this video, I give a brief introduction to the subject of DNA cloning.

DNA cloning is an important lab skill that all life and biomedical science students should possess. In the video, I provide a summary of in vivo and in vitro cloning, along with the key steps, tools and methods you would use.

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.
 

Additional Reading

The video was produced with help from the following resources:

Tuesday, 30 April 2024

New video posted: Gene Regulation - how do cells control the expression of genes?

I have just posted a video that looks at the complex processes of gene regulation and protein production within cells. In the video, I explore six key stages where cells regulate protein synthesis, ensuring precise protein production according to cellular needs. These stages include:

  1. Transcriptional Control: The initiation of RNA production and the involvement of transcription factors.
  2. RNA Processing: The conversion of pre-messenger RNA to mature mRNA, including splicing and editing.
  3. Transport and Localisation: The transportation of mRNA to the correct cellular locations for protein synthesis.
  4. Translational Control: Regulation of mRNA translation within the cellular environment.
  5. RNA Degradation: Mechanisms that determine the lifespan of mRNA molecules.
  6. Protein Regulation: Various methods cells use to control protein activity, such as chemical modifications and localisation.

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.
 

Additional Reading

The video was produced with help from the following resources:

Monday, 29 April 2024

New video posted: Translation - making proteins from DNA - decoding mRNA to make the protein

This is the second of two videos on how cells make proteins using DNA. In the first video, I looked at the first step, which is making the messenger RNA (mRNA) a process called transcription - Transcription - making proteins from DNA - the mRNA.

In this video, I will guide you through the process of producing the protein from the mRNA, also known as translation. I will look at the coding problem (how many mRNA bases do you need to code from an amino acid), the number of reading frames in a DNA molecule, and how the cell produces protein from the mRNA.

  

If you would like to support my blogging efforts, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.
 

Additional Reading

The video was produced with help from the following resources: