Friday 26 July 2024

New Video Posted: Understanding the Function of Mitochondria | Dr. Peter Mitchell's Nobel Prize-Winning Work

 In this video - Understanding the Function of Mitochondria | Dr. Peter Mitchell's Nobel Prize-Winning Work - I discuss the function of mitochondria, highlighting Dr. Peter Mitchell's Nobel Prize-winning chemiosmotic theory, which explains how mitochondria generate ATP using an electrochemical gradient across their inner membrane.  

I finish up by highlighting that while the mitochondria can give the cell the energy it needs for life, they also play a role in cell death by releasing factors that trigger apoptosis.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.

Thursday 25 July 2024

New Video Posted: How to Determine Protein Size on an SDS-PAGE Gel | Step-by-Step Tutorial

retention factorThis video - How to Determine Protein Size on an SDS-PAGE Gel | Step-by-Step Tutorial - is in response to questions I have had about a video in which I show how to calculate the size in base pairs of bands on a DNA gel.

In the video, I explain how to determine the molecular weight (kilodaltons; kDa) of a protein on an SDS-PAGE gel. The method involves constructing a table with the known molecular weights of protein markers, calculating their logarithmic values, measuring the distance each band travels and determining their retention factor (Rf) values.

I then show how to plot the graph and determine the size in kilodaltons (kDa) for the protein under investigation.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: A free step-by-step guide is available for this video - download.

Tuesday 25 June 2024

New Video Posted: The History, Structure and Functions of Mitochondria

This video - The History, Structure and Functions of Mitochondria is the first of three on the mitochondria. The other two videos are:

In the video, I examine the history and functions of mitochondria. I start with Rudolf Albert von Kölliker's initial description in 1852 and subsequent naming by Carl Benda in 1898. I explain how these organelles are more than just static power plants of the cell. I highlight the dynamic nature of mitochondria, their ability to form networks, and their crucial roles in energy production and cellular metabolism.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.

Monday 24 June 2024

New Video Posted: Exploring Nuclear Organisation: Chromatin, Chromosomes, and the Nucleolus

This video - Exploring Nuclear Organisation: Chromatin, Chromosomes, and the Nucleolus - is the final video in a series of four videos on the nucleus.

The other three are:

In this video, I explore the organisation within the nucleus, emphasising that it is structured rather than chaotic. I explain how Spectral Karyotyping reveals that chromosomes occupy specific territories and highlights the structured nature of chromatin, which can be either open or closed and influences transcription and replication. I also examine the nucleolus, describing its crucial role in producing ribosomes and signal recognition particles (SRP) and outlining the complex processes of ribosomal RNA (rRNA) synthesis and assembly.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.

Friday 21 June 2024

New Video Posted: Understanding the Nuclear Pore: Gatekeeper of the Nucleus

This video - Understanding the Nuclear Pore: Gatekeeper of the Nucleus - is the third in four videos on the nucleus.

The other three are:

In the video, I explore the structure and function of the nuclear envelope and its critical role in maintaining the environment of the nucleus. I explain how the nuclear pore facilitates gated transport, allowing materials to move between the nucleus and the cytosol. Highlighting its complexity, I described how the nuclear pore is composed of numerous nucleoporins, forming a cylindrical channel that selectively regulates the passage of molecules based on their size, with larger molecules requiring active transport mechanisms.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.

Thursday 20 June 2024

New Video Posted: Understanding the Nuclear Envelope: Protecting and Regulating the Nucleus

This video - Understanding the Nuclear Envelope: Protecting and Regulating the Nucleus - is the second of four videos on the nucleus.

The other three are:

The video explains that the nuclear envelope, consisting of inner and outer membranes, protects DNA from mechanical stress and regulates the nucleus's internal environment, essential for proper mRNA processing. I highlight the role of the nuclear lamina in safeguarding DNA. I describe the challenges posed by the nuclear envelope, such as the need to disassemble during cell division and manage material exchange via nuclear pores. Overall, the nuclear envelope is crucial for maintaining nuclear integrity and function despite its associated complexities.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.

Wednesday 19 June 2024

New Video Posted: Understanding the Nucleus: Structure and Function | Cell Biology Explained

This video - Understanding the Nucleus: Structure and Function | Cell Biology Explained - is the first of four videos on the nucleus. The other three are:

The video explains the cell nucleus, highlighting its roughly spherical shape and double membrane structure, which includes an inner and outer membrane with a perinuclear space. It describes the nucleus's contents, such as chromatin for gene transcription and mRNA splicing, and features like nuclear pores for transport and the nuclear lamina for structural support and various cellular functions. Additionally, I note that the outer nuclear membrane and perinuclear space are continuous with the endoplasmic reticulum.

If you would like to say thanks for the video, then please feel free to buy me a coffee at https://www.buymeacoffee.com/drnickm

Blog Bonus: Free information sheet summarising the video and defining the key terms - download.