Wednesday 11 September 2024

New Video: Three Parent Babies: Mitochondrial Disease Treatment

In the video - Three Parent Babies: Mitochondrial Disease Treatment - I look at how mitochondrial disease can be treated using mitochondrial replacement therapy (MRT) and three-parent babies.

The mitochondria, often called the "powerhouses" of the cell, provide the energy that keeps our bodies functioning. Interestingly, mitochondria carry their own DNA, separate from the DNA in the cell’s nucleus. This mitochondrial DNA (mtDNA) is passed down almost entirely from our mothers, and it plays a key role in producing proteins essential for the mitochondria's function.

However, mutations in mitochondrial DNA can lead to serious and sometimes life-threatening conditions, referred to as mitochondrial diseases. These diseases primarily affect high-energy tissues such as the brain, muscles, and heart, resulting in a range of debilitating symptoms.

What is Mitochondrial Replacement Therapy?

Mitochondrial replacement therapy (MRT) has been developed to combat these inherited mitochondrial conditions. This procedure aims to replace faulty mitochondria and prevent transmitting mitochondrial diseases from mother to child.

Here’s how it works: 

  • An egg is taken from a healthy donor, and its nucleus is removed, leaving behind healthy mitochondria.
  • Then, the nucleus from the mother’s egg (who has mitochondrial disease) is transferred into the donor egg, essentially creating a new egg with the mother’s genetic material but the donor’s healthy mitochondria.
  • This egg is fertilised with the father’s sperm and implanted into the mother’s womb.

The result is a baby who inherits the vast majority of their DNA from their biological parents but receives mitochondria from a third-party donor. This process prevents the faulty mitochondria from being passed on, giving the baby a chance at a healthy life without mitochondrial disease.

Ethical Considerations of MRT

While mitochondrial replacement therapy has successfully prevented mitochondrial diseases, it comes with significant ethical considerations. Since mitochondria contain their own DNA, this procedure changes the genetic makeup of the individual born through MRT and their future offspring. This raises important questions about the long-term impact on the human gene pool and whether we should alter human genetics this way.

Despite these concerns, mitochondrial replacement therapy has already been performed in some countries, offering families the chance to have healthy children free from mitochondrial disease.

Additional Resources


No comments:

Post a Comment